Modules on Involutive Quantales: Canonical Hilbert Structure, Applications to Sheaf Theory

نویسندگان

  • Hans Heymans
  • Isar Stubbe
چکیده

We explain the precise relationship between two module-theoretic descriptions of sheaves on an involutive quantale, namely the description via so-called Hilbert structures on modules and that via so-called principally generated modules. For a principally generated module satisfying a suitable symmetry condition we observe the existence of a canonical Hilbert structure. We prove that, when working over a modular quantal frame, a module bears a Hilbert structure if and only if it is principally generated and symmetric, in which case its Hilbert structure is necessarily the canonical one. We indicate applications to sheaves on locales, on quantal frames and even on sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bicategory of m-regular Involutive Quantales

Recently the theory of Morita equivalence for involutive quantales and the notion of the interior tensor products of Hilbert modules over involutive quantales evolved considerably (see e.g. Paseka, 2002 and Paseka, 2001). The present paper is an attempt to put a part of this theory in a broader context of the bicategory of m-regular involutive quantales. For facts concerning quantales in genera...

متن کامل

Rieffel induction and strong Morita equivalence in the context of Hilbert modules

The Morita equivalence of m-regular involutive quantales in the context of the theory of Hilbert A-modules is presented. The corresponding fundamental representation theorems are shown. We also prove that two commutative m-regular involutive quantales are Morita equivalent if and only if they are isomorphic. In the paper [5] F. Borceux and E.M. Vitale made a first step in extending the theory o...

متن کامل

Groupoid sheaves as Hilbert modules

We provide a new characterization of the notion of sheaf on an étale groupoid G, in terms of a particular kind of Hilbert module on the quantale O(G) of the groupoid. All the theory is developed in the context of the more general class of quantales known as stable quantal frames, of which examples are easy to construct because their category is algebraic. The homomorphisms of our Hilbert module...

متن کامل

00 2 Sup - lattice 2 - forms and quantales ∗

A 2-form between two sup-lattices L and R is defined to be a suplattice bimorphism L×R → 2. Such 2-forms are equivalent to Galois connections, and we study them and their relation to quantales, involutive quantales and quantale modules. As examples we describe applications to C*-algebras.

متن کامل

00 3 Sup - lattice 2 - forms and quantales ∗

A 2-form between two sup-lattices L and R is defined to be a suplattice bimorphism L×R → 2. Such 2-forms are equivalent to Galois connections, and we study them and their relation to quantales, involutive quantales and quantale modules. As examples we describe applications to C*-algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2009